The Chain Rule

Tamara Kucherenko

Lesson Plan

•00

- Why another differentiation rule?
- The formula for the chain rule
- Examples

More Examples

Motivation

How to differentiate

- $\sqrt{1+x^2}$
- $\sin(x^3)$ $(1+2x)^{12}$

The Chain Rule

The Chain Rule.

If g is differentiable at x and f is differentiable at y=g(x) then the composite function $f\circ g$ is differentiable at x and f is differentiable at f is differentiable at f is differentiable at f and f is differentiable at f is

The verbal form of the chain rule $(f[g(x)])' = \text{outside}'[\text{inside}] \cdot \text{inside}'$

Example 1 (A radical)

Differentiate $h(x) = \sqrt{x^2 + 1}$.

The "outside" function is $f(y) = \sqrt{y}$, the "inside" function is $g(x) = x^2 + 1$.

Then
$$f'(y) = \frac{1}{2\sqrt{y}}$$
; $g'(x) = 2x$ and

$$h'(x) = f'[g(x)] \cdot g'(x) = \frac{1}{2\sqrt{g(x)}} \cdot g'(x) = \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x = \boxed{\frac{x}{\sqrt{x^2 + 1}}}$$

Example 2 (A trigonometric function)

Differentiate $h(x) = \sin(x^3)$.

Therefore,
$$(\sin(x^3))' = 3x^2\cos(x^3)$$
.

Example 3 (A polynomial)

Differentiate $h(x) = (1+2x)^{12}$.

$$h'(x) = \begin{bmatrix} \underbrace{(1+2x)^{12}}^{\text{inside}} \end{bmatrix}' = \underbrace{12(1+2x)^{11}}^{\text{inside}} \cdot 2$$
outside derivative derivative of the outside of the inside

Therefore,
$$((1+2x)^{12})' = 24(1+2x)^{11}$$
.

Leibnitz Notation

The derivative of $f \circ g$ can be written in Leibnitz notation.

Recall that
$$h'(x) = \frac{dh}{dx}$$
. Denote $y = g(x)$, then

$$\frac{d}{dx}[f \circ g] = \frac{df}{dy} \cdot \frac{dy}{dx}$$

Example 4 (Nested chain rule)

Differentiate $h(x) = (\sqrt{x^4 + 2} + 1)^3$.

To differentiate h(x) we proceed stepwise

$$h'(x) = \frac{d}{dx}(\sqrt{x^4 + 2} + 1)^3 = 3(\sqrt{x^4 + 2} + 1)^2 \cdot \frac{d}{dx}(\sqrt{x^4 + 2} + 1)$$

$$= 3(\sqrt{x^4 + 2} + 1)^2 \cdot (\frac{d}{dx}\sqrt{x^4 + 2} + 2)$$

$$= 3(\sqrt{x^4 + 2} + 1)^2 \cdot \frac{1}{2\sqrt{x^4 + 2}} \cdot \frac{d}{dx}(x^4 + 2)$$

$$= 3(\sqrt{x^4 + 2} + 1)^2 \cdot \frac{1}{2\sqrt{x^4 + 2}} \cdot 4x^3$$

$$= \boxed{\frac{6x^3(\sqrt{x^4 + 2} + 1)^2}{\sqrt{x^4 + 2}}}$$

Example 5 (A function with parameters)

Find the derivative of $h(x) = (ax^2 + 5)^n$ where a > 0 and n is a positive integer.

Here the outside function $f(y) = y^n$ and the inside function $g(x) = ax^2 + 5$. Since $f'(y) = ny^{n-1}$ and g'(x) = 2ax we get

$$h'(x) = n(ax^2 + 5)^{n-1} \cdot 2ax$$

Example 6 (Differentiating a function that is not specified)

Suppose that f'(x) = 3x - 1. Find $\frac{d}{dx}f(x^2)$ at x = 2.

The inside function is $y = x^2$, the outside function is f(y).

$$\frac{d}{dx}f(x^2) = \frac{df}{dy} \cdot \frac{dy}{dx} = f'(y) \cdot 2x = (3y - 1) \cdot 2x = (3x^2 - 1) \cdot 2x$$

Substituting x=2 we get $(3\cdot 2^2-1)2\cdot 2=\boxed{44}$

Formula

THE END